ACT REVIEW PROBLEMS

1. Which of the following equations has y varying directly as the square of w and inversely as the cube of t?
A. $\frac{y^{2}}{t^{3}}=w$
B. $\frac{w^{2}}{t^{3}}=y$
C. $\frac{t^{2}}{w^{3}}=y$
D. $\frac{\sqrt{w}}{\sqrt[3]{t}}=y$
E. $\frac{w^{2}}{y^{3}}=t$
2. How many points do the graphs of all 3 of the following equations have in common?

$$
\begin{aligned}
& -x=y-3 \\
& -x=-y-3 \\
& 3 x=-3 y+2
\end{aligned}
$$

A. 0
B. 1
C. 2
D. 3
E. Infinitely many
3. Listed below are 5 functions, each denoted $g(x)$ and each involving a real number constant $\mathrm{c} \geq 2$. If $f(x)=2^{\mathrm{x}}$, which of these five functions yields the greatest value for $f(g(x)$
A. $g(x)=c(x)$
B. $\mathrm{g}(\mathrm{x})=\frac{c}{x}$
C. $\mathrm{g}(\mathrm{x})=\frac{x}{c}$
D. $g(x)=x-c$
E. $g(x)=\log _{c} x$
4. If $2 x-y=6$ and $x+4 y=12$, what is the value of y ?
A. -6
B. 0
C. 1
D. 2
E. 3
5. Which of the following is a factored form of

$$
4 x^{3} y+4 x y^{3}
$$

A. $4 x^{3} y^{3}(y+x)$
B. $4 x y\left(x^{2}+y^{2}\right)$
C. $8 x y\left(x^{2}+y^{2}\right)$
D. $4 x^{3} y^{3}$
E. $8 x^{4} y^{4}$
6. You are told that $\mathrm{m}=\mathrm{ak}+5$ where $\mathrm{a} \neq 0$. Which of the following equations expresses k in terms of a and m ?
A. $\mathrm{k}=\frac{m-5}{a}$
B. $\mathrm{k}=\frac{5-m}{a}$
C. $\mathrm{k}=\frac{m+5}{a}$
D. $\mathrm{k}=\frac{m}{a}-5$
E. $\mathrm{k}=\frac{m}{a}+5$
7. For all nonzero r, t, and z values, $\frac{16 r^{3} t z^{5}}{-4 r t^{3} z^{2}}=$?
A. $-\frac{4 z^{3}}{r^{2} t^{2}}$
B. $-\frac{4 z^{3}}{r^{2} t^{2}}$
C. $-\frac{4 z^{3}}{r^{2} t^{2}}$
D. $-4 r^{4} t^{4} z^{7}$
E. $-4 r^{2} t^{-2} z^{3}$
8. Which of the following conditions on x determines when $(x-2)(x+3)-\left(x^{2}-4\right)$ will be positive?
F. $x=-2$
G. $x>2$
H. $x \geq 10$
I. $2 x^{2} \geq 10$
J. $x^{2}-x<6$
9. If A, B, and C are real numbers, and if $\mathrm{ABC}=1$, which of the following conditions must be true.
F. AB is equal to $\frac{1}{C}$
G. A, B, C must all be positive
H. Either $\mathrm{A}=1, \mathrm{~B}=1$, or $\mathrm{C}=1$
I. Either $\mathrm{A}=0, \mathrm{~B}=0$, or $\mathrm{C}=0$
J. Either $\mathrm{A}<1, \mathrm{~B}<1$, or $\mathrm{C}<1$
10. For what value of a would the following system of equations have an infinite number of solutions?

$$
\begin{aligned}
& 2 x-y=6 \\
& 8 x-4 y=a
\end{aligned}
$$

A. 2
B. 6
C. 8
D. 18
E. 24
11. Which of the following is a factor of $x^{2}-5 x-6$?
F. $(\mathrm{x}-1)$
G. $(x+2)$
H. $(x-2)$
J. $(x-3)$
K. $(x-6)$
12. Which of the following identifies exactly those values of x that satisfy

$$
5-2(3-x) \geq 5 x-3(x-1)
$$

A. All real numbers
B. $x \leq-1$
C. $\mathrm{x} \geq \frac{1}{2}$
D. $\mathrm{x} \leq \frac{1}{2}$
E. No real numbers

ACT REVIEW PROBLEMS

6. The two triangles below are similar with $\angle A \cong \angle D$. What is the perimeter of $\triangle \mathrm{DEF}$?
7. How many roots does the function $f(x)$ have, if $f(x)=(2 x-3)(4 x+4)(5 x+2)(x-1)$?
8. One angle, $\angle \mathrm{A}$, has 3 times the measure of its supplement, $\angle \mathrm{B}$. What is the degree measure of $\angle \mathrm{A}$?
9. In the right triangle ABC below, what is the value of $\sin A$? What is the value of $\cos C$?
C

10. What is the area, in square units, of the trapezoid graphed below?

11. Simplify:
a) $\frac{a^{-2}}{b}\left(a^{2} b^{2}\right)=$
b) $\frac{x^{2} y}{x^{-3} y^{4}}=$

12. (Use diagram from question 6) What is the ratio of the area of $\triangle \mathrm{ABC}$ to the area of $\triangle \mathrm{DEF}$?
13. Which of the following equations is graphed below?
a) $y=-3 x$
b) $y=\left(-\frac{1}{3}\right) x$
c) $y=\left(\frac{1}{3}\right) x$
d) $y=3 x$
e) $y=x-3$

14. Write the equation of a circle with the
center at the origin and radius 5 m .
15. What is the center of the circle described by the equation: $(x-5)^{2}+(y+3)^{2}=16$

ACT REVIEW PROBLEMS

10. Write the equation of a circle with the center at $(-4,-7)$ and radius $\sqrt{5}$.
11. In the (x, y) coordinate plane below, a straight line passes through the 3 indicated points. What is the value of k ?
A. $-\frac{15}{2}$
B. $-\frac{6}{5}$
C. $\frac{6}{5}$
D. 6
E. $\frac{15}{2}$

12. In a laboratory experiment, Amoeba A lives 5 hours longer than Amoeba B, and Amoeba B lives twice as long as Amoeba C. If n is the lifespan of Amoeba C in hours, what is the lifespan of Amoeba A, in terms of n ?
A. $5+2 n$
B. $7+n$
C. $7 n$
D. $10 n$
E. $2(5+n)$
13. If the denominator is NOT zero, then
$\frac{3 X^{2}-3 Y^{2}}{-X-Y}$ simplifies to:
F. $-3 \mathrm{Y}-3 \mathrm{X}$
G. $3 \mathrm{Y}-3 \mathrm{X}$
H. 3
J. $3 \mathrm{X}+3 \mathrm{Y}$
K. $3 \mathrm{X}-3 \mathrm{Y}$
14. Which of the following polynomials has 0 and $3 / 4$ as zeros?
A. $4 \mathrm{x}-3$
B. $4 x+3$
C. $4 x^{2}+3 x$
D. $4 x^{2}-3 x$
E. $3 x^{2}-4 x$
15. The equation $\mathrm{x}^{2}-10 \mathrm{x}+\boldsymbol{k}=0$ has only one solution for x . What is the value of \boldsymbol{k} ?
A. 0
B. 5
C. 10
D. 20
E. 25
16. The graph of the solution set for the system of equations below is a single line in the standard (x, y) coordinate plane.

$$
\begin{gathered}
18 x-30 y=54 \\
6 x+k y=18
\end{gathered}
$$

What must be the value of k ?
A. -10
B. -6
C. $-\frac{1}{3}$
D. $\frac{3}{5}$
E. 3
17. In the standard (x, y) coordinate plane, what is the slope of the line that passes through the origin and the point $\left(\frac{1}{2}, \frac{2}{3}\right)$
18. If $x-y=5$ and $x+y=-4$, what is the value of $x^{2}-y^{2}$
19. What is the slope of any line parallel to the line $3 x+5 y=8$?

